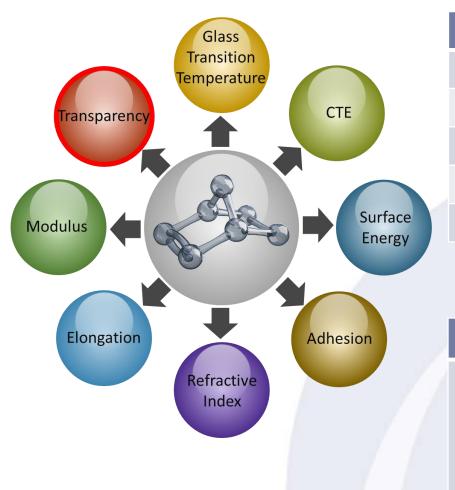

PNB Polymer Properties are Controlled by Changing the Functional Group (FG)

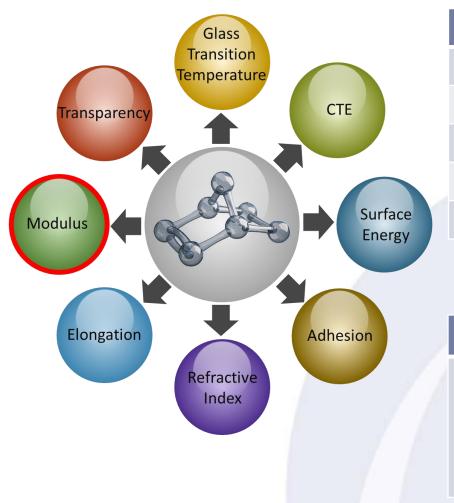
- Promerus' core technology provides ability to incorporate Functional Groups into PNB backbone
- Other Poly Cyclic Olefins do not offer the same degree of Functional Group tailorability


Glass Transition Temperature Can Be >300°C

Polymer	Τ _g
Polynorbornene	100-330°C
Polystyrene	90-110°C
PMMA	85-105°C
Zeonex®	69-163°C
Topas®	70-180°C

- Rigid polycyclic backbone yields high Tg
- Other polycyclic olefins lose chain rigidity when flexible co-monomers or ring-opening is employed

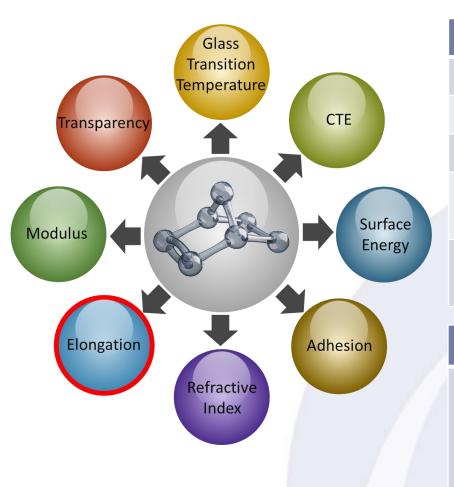
Transparency is high across broad spectrum


Polymer	Visible transparency
Polynorbornene	>92%
Polystyrene	90%
PMMA	>92%
Zeonex [®]	>92%
Topas®	>92%

Additional Information

 PNB can be transparent at 157, 193, 365, 405, 436, 1080 and 1550 nm

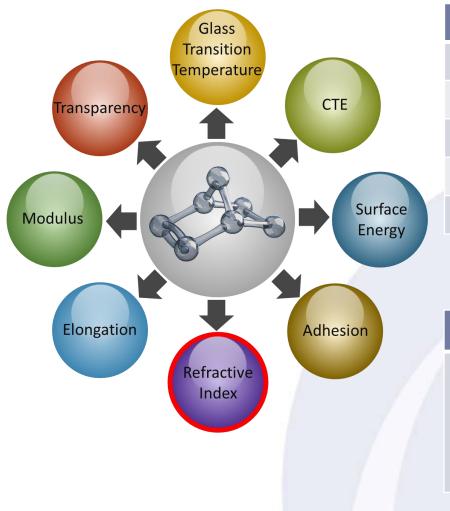
Modulus can be high (FG = H) or low (FG = Alkyl)



Polymer	Typical
Polynorbornene	0.5 to 3.5 GPa
Polystyrene	3 to 3.5 GPa
PMMA	2.2 to 3.8 GPa
Zeonex [®]	1.8 to 2.4 GPa
Topas [®]	2.6 to 3.2 GPa

- Lower modulus give lower wafer stress
- Lower modulus gives stress compliant layers

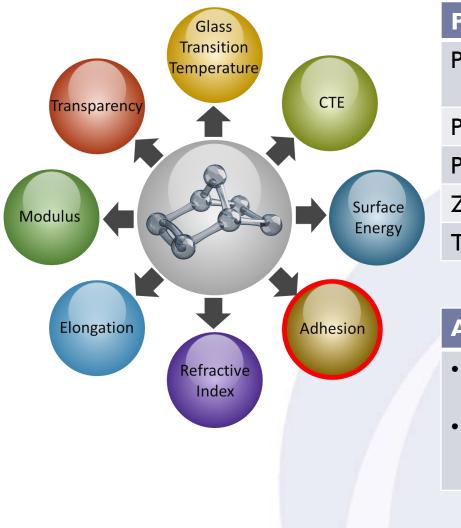
Elongation at break can be low (FG = H) or high (FG = Alkyl)


Polymer	Typical
Polynorbornene	5 to 100%
Polystyrene	7%
PMMA	~3%
Zeonex®	10-120% (inversely proportional with Tg)
Topas®	<10% (biaxially oriented films are higher)

Additional Information

• Crosslinked PNB can retain high elongation at break

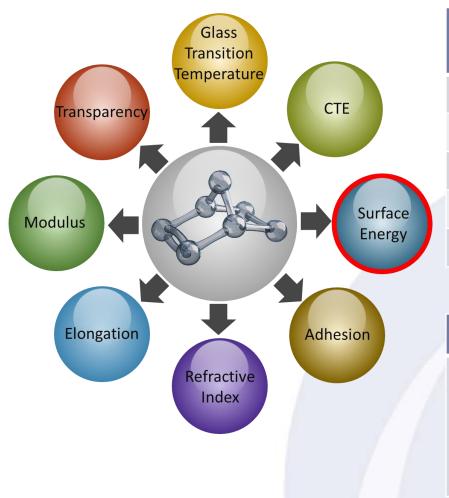
Refractive index range is broad for PNB



Polymer	Typical (589 nm)
Polynorbornene	1.49 to 1.64+
Polystyrene	1.59
PMMA	1.49
Zeonex [®]	1.51 to 1.53
Topas®	1.53

- Refractive index can be high for all C,H polymer (no hetero-atoms)
- Refractive index can be raised by addition of fillers

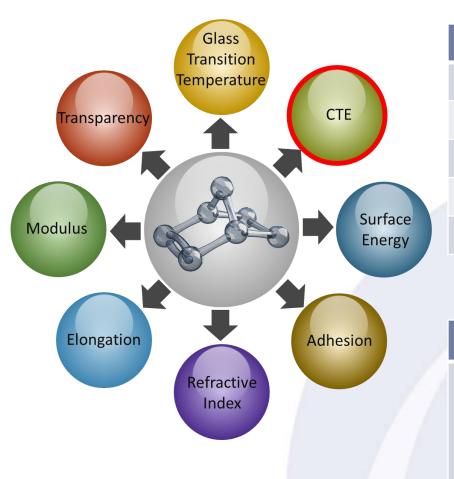
Adhesion is obtained by formulation



Polymer	Typical
Polynorbornene	SiO_2 , Si_3N_4 , Cu, Au, Ti, Al, etc
Polystyrene	
PMMA	Unlikely to adhere to
Zeonex [®]	substrates above
Topas [®]	

- Die shear >5 MPa after thermal compression
- Solvent-less polymerization system
 >10 MPa to silicon

Surface energy can be tailored


Polymer	Typical (H ₂ O contact angle)
Polynorbornene	40° to 109°
Polystyrene	87°
PMMA	71°
Zeonex [®]	>100°
Topas®	>100°

Additional Information

 Surface energy can be tailored to produce hydrophobic films that are soluble in aqueous base.

Coefficient of Thermal Expansion (CTE) can be low (FG = H) or high (FG = Alkyl)

Polymer	Typical
Polynorbornene	~50 to >200 ppm/°C
Polystyrene	70 ppm/°C
PMMA	70-77 ppm/°С
Zeonex [®]	60-70 ppm/°С
Topas [®]	60-70 ppm/°С
lopas [™]	60-70 ppm/°C

Additional Information

CTE depends on crosslink density

CONTACT US

http://www.promerus.com/contact-us

(a)

info@promerus.com

9921 Brecksville Rd. Brecksville, OH, USA 44141

+1-440-922-1453

