Avatrel® Stress Buffer Coatings:

Low Stress Passivation and Redistribution Applications

Ed Elce, Chris Apanius, Jeff Krotine, Jim Sperk, Andrew Bell, Rob Shick*

Sue Bidstrup-Allen, Paul Kohl

SUMITOMO BAKELITE CO., LTD.

Takashi Hirano, Junya Kusunoki, Toshiro Takeda

Outline

- Motivation
 - Simple Coatings
 - FEM Verification of Concept
 - Modulus vs. CTE
- Avatrel
 - Properties
 - Processing
- Materials Integration and Reliability Flip Chip Packages
 - Thermal Cycling
 - Pressure Cooker Test
- New Generations
- Summary

Low Stress Motivation

- Die are getting larger and more fragile (low k)
- Reduction of Stress is important to maintain reliability
- Reduce material shrinkage
- Reduce thermal stress
 - Reduce Modulus, E(T) and/or CTE, α(T)

$$S = \int E(T) \times Da(T) dT$$

Wafer Warpage with Simple Coatings

Wafer: 8 inch Si Wafer

Thickness: 625 mm Measuring span: 100 mm

Wafer Stress with Simple Coatings

Calculation of Stress

$$s = \frac{\mathsf{T}^2 \cdot \mathsf{E}}{6 \cdot \mathsf{R} \cdot \mathsf{t} \cdot (1 - ?)}$$

$$R = \frac{S^2 + 4 \cdot X^2}{8 \cdot X}$$

here:

S: Stress (kg/mm²)

T: Thickness of Wafer (mm)

E: Modulus of Silicon

 $(= 1.62 \times 10^4 \text{ kg/mm}^2)$

R : Radius of Curvature

t : Film Thickness (mm)

?: Poisson Ratio Silicon

(=0.3)

S : Measuring Span

(= 100 mm)

X: Warpage (mm)

 $1 \text{ kg/mm}^2 = 9.807 \text{ MPa}$

A More Detailed View Using Finite Element Modeling

5 μm Mesh cut

The distortion element of 4 nodal point (#11)

Nodal point: 9007 Element: 8649

Thermal stress analysis from 125 to -55degC

Material Properties

Item	Tg	Modulus	СТЕ	Poisson's ratio
Unit	°C	kgf/mm²	ppm/°C	
Chip	-	16800	3.0	0.34
Underfill	80	E1: 820 E2: 3.1	α1: 32 α2: 102	0.30
BT substrate	-	x, z: 1990 y: 870	x, z: 17.6 y: 64.1	0.39
Bump	-	-40°C: 2120 25°C: 1620 80°C: 1320 125°C: 1120	29.2	0.35
PBO (CRC) 10 μm thick	330	300	50	0.30
Avatrel 10 μm thick	200	40	150	0.30

FEM Findings...

Reducing Modulus has a greater impact than reducing CTE

Wafer Level Packaging

Synergies Between Two Chemistries

Polynorbornene

- Low Dielectric Constant
- Low Moisture Absorption
- Isotropic Properties
- High T_g From Backbone
- Transparency
- Alkyl Tune Modulus/Stress

Epoxy

- Adhesion
- Photosensitive
- Accepted Chemistry

Typical Properties

Photodefinition

- Negative Tone, Solvent Develop
- > Up to 50 μm thick
- > 1:1 Aspect Ratio
- > 250-500 mJ/cm²

Adhesion

Pressure Cooker (196 hours) on Si, SiON, Si_xN_y, SiO₂, PI, AI & Cu No delamination and passes tape test

Top Layer Metal

Cr/Cu & Ti/Cu 90° Peel = 4 lb/in

JEDEC Solder Reflow*

- Level 2A PASS (60°C/60% RH, 120 hours, 260°C reflow 3x)
- Level 3 PASS (30°C/60% RH, 192 hours, 260°C reflow 3x)

Electrical

- Dielectric Constant 2.50 @ 1 MHz
- Dissipation Factor 0.009 @ 1 MHz

Thermo-Mechanical

- \rightarrow Tg = 220°C (TMA)
- > Modulus, 0.5 GPa
- ➤ ETB, 20%
- > Stress, 0-5 MPa

Moisture

> 0.14% (100% RH, 24 hrs, RT)

^{* 8} mm on 0.32 mm SiN wafer, 160°C cure, SB-epoxy molding compound, 208 L QFP with Cu L/F, scanning acoustic microscope inspection

Processing

- 1. Plasma Pre-Treatment (O₂:Ar) at 300 mTorr and 300 Watts for 30 seconds
- 2. Dehydration bake before coating is optional
 - 4 minutes at 250°C is effective
- Spin Coat Avatrel on wafer with a spread spin of 800 rpm for 8 seconds and Final Spin for 30 seconds to obtain final film thickness
- 4. Soft Bake at 120°C for 5 minutes
- 5. I-Line UV Exposure with Adjusted Depth of Focus
- 6. Post Exposure Bake at 100°C for 4 minutes
- Spray Develop for 30 seconds with limonene, Rinse with IPA for 10 seconds 5 second overlap and Spin Dry
- 8. Cure at 160°C for 60 minutes

Typical process, but low T final cure

Formulation & Process Optimization: Overlapping process space for Al and Silicon Nitride

Peeling on Al

Good on Al

Good on PE SiN

Good on both

Imaging of 2195P

		365nm UV Exposure Dose (mJ/cm²)																	
10 um Via		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
Depth Of Focus (% Film Thickness)	11																		
	22																		
	33																		
	44																		
	56																		
	67																		
	78																		
	89																		
	100																		

Imaging of Avatrel, 50 mm

Test Package

Imaging of Avatrel, 10 mm

Prebake: 120°C/5min

Exposure dose: 400mJ/cm²

PEB: 100°C/4min

Curing: 160°C/60min in N₂

Observation pattern: 40um via hole

Bird's-eye View

Cross section

After developing

10 micron film

After curing

Magnification: x400

Magnification: x2000

Reliability Testing of Avatrel

Sample Preparation

- Silicon wafer coated with Avatrel or Non-photosensitive Polyimide, 5 μm thick
- Substrate: FR5 with solder resist
- Underfill: standard grade (CRP-4152R5) or new, low stress grade (CRP-X4498)
- Post-cure 150°C, 120 minutes

Treatment

- JEDEC Level III
 - Baking: 150°C / 24 hours
 - Humidity: 30°C / 60%RH / 192 hours
 - Reflow: 240°C IR reflow 3 times

- Thermal Cycling (T/C): 125°C/30min ←→ -55°C/30 min (no interval), 200 cycles
- Pressure Cooker Test (PCT): 125°C/100%RH/2.3 atm, 96 hours
- Evaluation by Scanning Acoustic Microscopy

Reliability Testing of Avatrel 2195P

		Avatrel	Non-photo PI		
Conventional Underfill (CRP-4152R5)	T/C Test	100% Pass	100% Pass		
	PCT	100% Pass	100% Pass		
Low Modulus & Low Moisture	T/C Test	100% Pass	100% Pass		
Underfill (CRP-X4498)	PCT	100% Pass	100% Fail		

Avatrel is compatible with standard and new, high reliability underfill materials

Major Factors Affecting Reliability

Avatrel Development Activities

- Sloped Sidewalls to facilitate conformal metalization and bumping processes
- Increased elongation and higher strength versions under evaluation
- Aqueous Base developable versions are underway

PROMERUS™

GT - "Polymer Pillars" Highly Compliant, Low Stress Approach

Single I/O structure functioning as both an electrical and optical interconnection

Avatrel Pillars...

Avatrel Summary

- Low Stress Materials focusing on stress buffer layers and redistribution
- Early results indicate significantly improved reliability is possible
- 160°C final cure temperature is compatible with back end wafer processing and post bump process steps
- Exceptionally low cure shrinkage
- Very good mechanical properties
- Very good photo definition in 5 to 50 µm thick films
- Good adhesion to all substrates
- Very low moisture absorption
- Highly tailorable new versions are in development

